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INTRODUCTION

While all systems of classical particles have single-particle momentum distri
butions n(p) of Maxwell-Boltzmm farm, the momentum distribution plays a rtde
central to our understanding of systems of quantum particles. An outstanding ex-
ample is the low-temperature superfluid behavior of the Bose liquid, ‘He, where the
sllperfluidity is associated with Bose condensation of a macroscopic fraction of the 4He
atoms into a zero-momentum state. The momentum distribution is complementary to
otl~er characterizations of many-body systems and can be more informative, The pair
correlation function of liquid ‘He is very close to that of a hard-sphere classical fluid,
whereas the momentul distribution revealg the quantum behavior in the form of a
A-fllnction spike in n(p) at p = O due to the Bose condensate. Nlomentum dbtfihJii-

tions are equally fundamental to the description of Fermi systems, The Fermi-liq~lid
~)roperties of 3He and electrons in metals are associated with a discontirmit y in the
Illfjlnentum distribution at the Fermi momentum, kF, which defines a Fermi sllrfncc
for n three- dimensiond system A (Ietailwi description of the, often cmnplex, Fermi
Slirfaces in metals is essential to understanding their transpott, optical, anti magnetic
~Jr(qm-ties. At low temperatures, the transition to s~]perfluid behnvior of lHe and tile
transiti~]n to superconducting behavior of electrons is rwmciated with the (Iisnppear-
;lrlce of this Fermi surface. An outstanding problem in nuclear physics is lww the
f~~l,~si-exponenti~ high-p tails obse~e(! in ttle n(p) of nuc]et-ms in nlic,lei iir~ r~]ntc(l to
t Ile sliort-r:~nge r~~l.sp~ce ~o~eifltioll~ O{r]u(”]~ns due to t}~~gtro[~~]y rr~)lllslve cf)r~

of t)ie [l[lcie(m-nucleon potential, ‘Ille momentum distributions of fillnrks me follll(i
to be (Iifferent inside nuclei and il~side fr~e nucleons, which sllggmts n p(mil)l(’ rolo
for ~~llarks ill the description of n~lclear forces, These varieci illustratio[ls nttmt to ttlo
lrlli)~)rtarlce of the !;lo[[lf![ltllm [listril)llti(m ,as n rcv~aling probe of tile wnv~ fllll{’tl{~lls
(If l~l]:u~tll]n [Imrly.b(]lly Sy!)trvnso
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across tms diverse range of energy and length scales, forces, and~ system types. The$
t’ , general features of n(p) for systems of given statistics are in principle quite similar.

t in practice, theorists in the various areas of physics face similar problems when t)iey
attempt to predict the momentum distribution accurately, and experimentalists face
similar problems when they make measurements of quantities related to the momen-
tum distribution and attempt to extract n(p) from their data. In all fields there
has been a rapid advance in theory and experiment (in particular, the development
of large-scale facilities for scattering experiments), which is presenting exciting new
scientific opportunities.

There have been several excellent reviews of momentum-distribution research in
particular subject areas of physics such as electronic systemsl and nuclear systems. ~
However, it is the commonality of interests, difficulties, and prospects across all of
physics, alo,lg with certain pivotal advances, which led to the organization of an
interdisciplinary Workshop on Momentum Distributions held at Argonne National
Laboratory on October 24-26, 1988. The purpose of this overview is to explain why
scientists with such diverse backgrounds have been brought togethel at this meeting,
to introduce and discuss the common elements of momentum-distribution studies,
and to establish a common language, We hope to facilitate an appreciation of the
nmre specialized articles which follow in these proceedings,

\Ve begin by summarizing the general properties of momentum distributions.
Differences and similarities of atomic, electronic, and nuclear many-body sy~tems
are examined, in terms of characteristic lengths and energies, relative importance of
exchange, and the nature of the two-particle interactions. We continue with a brief
commentary on the microscopic methods used to calculate n(p) from first principles.
Thereafter the discussion focuses on the ideas, techniques, and issues involved in tk
experimental determination of the momentum distribution: deepinektic scattering,
the impulse approximation, Y-scaling, fial-state effects, and scale breaking. Fil:ally,
some typical examples of theoretical and experimental momentum distributions will
be presented and compared, for a variety of aysterns.

FUNDAMENTALS

The momentum distribution n(p) of a quantum-mechanical system is the average
number of particles with momentum p, determined by the expectation value

in this expression, I* > is the unit-normalized JV-pnrticle staie of the systcm ant! n).
Jan( up~ are creation and annihilation operators for a particle with momenta p nnd

s~jirl projection a. Usually, one deals with the mcmentum distribution of p,articlm
having a given spin projection, defined by removing the spin sum in q (2,1) , At
fillitc telnperaturej, Eq. (2,1) is replaced by an ensemble average over nil N-particle
>tiit(’$,

Ill the quantum systems of interest to us, the de Broglie wavelength for si@v
p;irtic]e motion can be of the order of the interparticle spacing and in some rnmwt mIIrh

Iargcr, This implies lar e exchruqe e!~ects. The type of t~lln.ntum statistics OIN*YWII)y
tt)~’ particles, Bose or {ermi, then tl{a9;m itnportant hewing on the chnractt~r t~f tll~
momentum distribution, For R--Meparticles, the mnmy-body wave f~~nction lt~~lst h’
syrnrtwtric and there is no restriction {m tllc occ~lpancy of n.ny givrn oneh~~{ly iii~J-
Ilwtltlltn state, For Fermi particlrs, *!w {)v~*rA1wnve fllrlction rrlllst be nI~ti9yltlillf*trif*l
( ‘~lt15e(1~1f*r1t~y,the ~ccllp~ncy of ~rly f“~l(~~c$r~orle.})()(~y Inome:lturn stnt~ c;ll]~)ot i)P
gl”f’iitf’r thim one,
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approaches a Gaussiem, the class;cal NIaxwell-Boltzmann form, and the occtlpancy of

,1, any particular momentum state is always much less than one. In this iimit, the widths
of the momentum distribution is proportional to the thermal energy of the particlm

. and the mean kinetic energy is 3k ~T/2.

Upon lowering the temperature (or increasing the density), the occupancy of
some of the one-body moment urn states begins to approach one and the effects of
statistics begin to emerge. The momentum distributions begin to deviate from the
hlaxwell-Boltzmann form. For non-interacting particles where the single-particle mcw
tion can be described by states of definite momentum, the symmetry requirement
for Bose particles leads to the familiar Bose-Einstein momentum distribution, while
the antisymmetry requirement for Fermi particles leads to the familiar Ferrni-Dirac
distribution.

n(p)

n(p)

n(p)

n(p)

I T>>TC
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T>TC

k T<<TC
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P

T >> T.

kF p

Fig, 1 Typical Mmvinr of the m{mwntu:n ~!istribution M n fllnctim of
temperature for the ideal DOSPILnd Fmni gnwest The rhmrnrtrr-
istic ttymperatme Z’t is (Irfinwl in the t~xt.
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as the particles take ad~zantage of the lack of any restriction on multiple occupation.

,1, The behavior in the Fermi c~e is quite different. The distribution remains flat nnd
t ql,ose to one in the sm~l-p region u the temperature is lowered, as if there were ab

repulsion between particles trying to pile up at the same momentum. This behavior
is a direct consequence of the exclusion principle which forbids multiple occupation
of a particular momentum. state.

The effects of quantum statistics become dominant below a characteristic tcrr,-
perature, Tc, For both Fermi and Bose systems, we may define such a characteristic
temperature by the condition that the thermal de Broglie wavelength of the particles
is equal to some appropriate measure of the mean interparticle spacing.

The characteristic temperature for a Bose gas may be taken as the Bose-Einstein
condensation temperature Z’c= TBE = (2mh2/1.397mkB) p2i3, where p is the density
of the gas, m is the particle mass and kB is Boltzmann’s constant. At temperatures
higher than TBE, the occupancy of any particulsx one-body momentum state remains
finite. Below this trrnperature, a macroscopic (i.e. of order the total number of
particles in the system, IV) occupation of the k = O momentum state develops, which
is called “Bo~e-Einstein condensation. ” This is reflected in the appearance of a term in
n(p) proportional to a Dirac delta function d(p), with a coefficient which determines
the (finite) fraction of particles residing in the Bose condensate. The condensate
fraction increases as the temperature is lowered further until finally, at T = O, ali of
the particles are in the condensate. The condensate particles occupy a single quantum
state with a well defined mcmentum, namely p = O. Bose condensation represents a
novel macroscopic manifestation of quantum principles,

The characteristic temperature for a Fermi gas is determined by the Fermi en-
ergy, By definition this is the energy of the highest single- article level occupied at

f’T = O, all of the lower levels each being filled with v partic es, where v is the single-
particle level degeneracy arising from. spin (and possibly isospin) degrees of freedom.
Thus Tc = Z’F = (h2/2mkB)(6n2p/v) 213, As the temperature and hence the available
thermal energy declines, the particles nttempt to reduce their energies by occupying
lower energy levels, but their re~djustments uc constrained by the exclusion prin-
ciple. When the temperature has dropped substantially below Tc (say to Tc/5 or
TC/10), the lowest-lying single-particle levels will be completely filed with their ret-
inue of fermions and n(p) will approach one. However, levels near the Fermi surface
defined by k = kF = (67r2p/v)1i3 will be only partially occupied because of thermal
excitation. The rno ,entu

~g. l.~th ~urther decrease in temperature, the ~~1-o~near the
“str”bution then exhibits the characters i Fe ni-Dirac

shape, as shown in
Fermi wave number k~ steepens until, at T = O, all the particles have condensed into
the “Fermi sea. ” The sharp discontinuity that appears in n(p) divides the momentum
states below kF, which are fully occupied, from those above, which are empty.

At r’ = O in mm-interacting systems, the fraction of Bose particles which are
in the zero-momentum state reaches one, and there is a discontinuity of the Fermi
?t(p) at kF equal to one. In interacting systems at T = O, the featulcu of macroscopic
conticnsation at p = O in Bose systems and a finite discontinuity at kF in Fermi
s)’stems are predicted to persist under rather general assumptions, However, due to
the i[lteractions, the fraction of Bose particles which condense is less than one, and,
for Fermi ij.articles, tiw discontinltity at kF takes some wdue less than one. Thww
“(irpletion” etfct-ts will be discussed nlore fully below,

The single-particle propertim of m,my-bmly systmns, both interacting a~lfl non-
ir~teri~cting, m~y also be fruitfully (iiscussed in terms of the one-body density mntrix.
For a umit-norms.lized pure quantum state, this qllantity ig tif+ined by

pl(rl, ri) = N
1

dr2.(fr,v~V@(rlr2 ,,, rn)W(r’r1 ‘1,,,r~) ,



.-~..”.t ~1~~1, I ~~ measures ~ne cna.nge ot the wave function M a single
particle i: moved from rl to r~, all the other particles remtining fixed. In gfmcral,,’

‘ the one-body density matrix will depend on rl and r{ individually. However, in a
k hbrnogeneous, isotropic fluid it can only depend on the magnitude of the separation

vector:
pl(r~,ri) =Pl(l~i -r~l) . (2,3)

The single-particle density matrix of the fluid contains all the features of interest for
this overview; hence we shall restrict our attention to that case.

The momentum distribution and the one-body density matrix are related by
Fourier transformation. For a Fermi system, we may write simply

n(p) = v–’ I pl(r)e’prdr 9 (2.4)

where v is the level degeneracy. For a Bose system, the momentum distribution is
traditionally separated mto two components, a delta function term representing the
zero-momentum condensate and a ~mooth component corresponding to occupation
of the other single-particle states. Thus

n(p) = (2@3/m(l@ + n’(p) , (2.5)

where the condensate fra: ion is determined by

and the non-con densate portion has the Fourier represent at ion

n’(P) =
I

[Pi(r) - Pl(~)]eiprJr .

(?.6)

(2,7)

Typical behaviors of both n(p) and p(r) for interacting Bose and Fermi systems
at zero temperature are indicated in Fig. 2, To be definite, the particles are assumed
to experience strong repulsive tw~body interactions at small separations.

Consider first the one-body density matrix and momentum distribution $Jf the
ground state of the interacting Bose system. The dynamical short-range corre!atirms
due to the core repulsion, which govern the small-r behavior of pl (r) without regwi
to statistics, determine n(p) at large p, The effects of statistical correlations are most
(apparent in pl (r) at large r and in n(p) at small p. The corlden~ate, which gives rise
to a finite value of pl (r) at infinity, again manifests itself in n(p) as a delta-function
spike at p -= O (not visible in the plot). The detai!ed behavior of both quantities
at intermediate r, or p, is also significantly tiected by the statistics. An intcrestiilg

P
sin uiar feature of the uncondensed component at small p results from the coupling
of ong-wavelength density fluctuations to the condensate. This feature leadg to a
finite intercept of pn(p) at p = O, as shown3 in Fig. 2.

Now consider the ground-state rnornelltum distribution of the intmricting Ferllli
system, as sketched in Fig, 2. The step function d(p - &r) which gives n(p) for the
[loninteracting Fermi gas is modified in the presence of interactions, hut the g~*nrral
shape is preserved. The interactions promote some of the particles from single-~)mtirlr
states insi(lc the Fermi sea, i.e., with mCJrn(?nt~ 1(’Ss th~ LF, to %t~t~~ ol!t~i(k’, th~l~

(l~~plt?tingthe Fermi sea and creating a tall at higher momenta. If the system rcttl~ilui
“llf)rm,al,” meaning that the interactions ,am net s~lch M to crente n sl]pt’rtllii(i grolltlti
state, ~I(p) retains its rrmst chnract~r-is tic Fr*rtni fenture, n,n.rrwlya (liw.l~l~tinllity nt t}l~’
ttle Fermi wave number (cf. Fig, 2). Tile size of the (Iismmtinuity, {!f’n(jt~fl t]~’r?’itl
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rneasu-re of the strength of the interparticle coupling.

*’,
Since the type of statistics has little effect on pl (r) at small r, the one-body*

~ensity matrix for the Fermi system is similar to that for the Bose system in that
region, as seen in Fig. 2. However, at large r the behavior of this quantity is markedly
different in the two systems: whereas the Bose pl (r) approaches a constant v[alue,
reflecting the existence of a condensate and therefore off-diagonrd long-range order~ Is
(ODLRO), the Fermi pl (r) damps out to zero, in accordance with the absence of
ODLRO at the one-particle level. The oscillatory behavior of the Fermi pl (r) is
required to produce the discontinuity of n(p) at kF. The zeros of pl (r) are determined
by the location of the Fermi surface, and the overall amplitude of the oscillations is
determined by the magnitude of Zk..

BOSE FLUID I

Fig, 2
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Typical behavior of the momentum distribution and one-body
density matrix in the ground state for interacting Bose and Fermi
system,~,

13efore proceeding to more concrete matter9 of calculation and measurement, it
will be useful to formulate meaningful bases for com arisen of the diverse many -bwly

{
s ‘stems involved in our studies, In so doing we sh d

%
tin a better understanding f~f

t ]cir similarities and differences and begin to establis a common Iwlgllhge for ttle
s~lbseqtwnt discussions,

our f)verview will focu9 on tl~rve t~pfvof ;nany-body systems, It will he (’(Jllvf’-
[licnt to refer to collections of ntomq, like Iiq!l]d or solid 4He or ~He or soli(l It~olw-
IIllar hydrogen, simply a9 dtomtc sy.tttms, IIy nuci?ar s!jst~ms we stldl ltlvnll I)l)ttl



.,*AA tiG 4Au~bcJwlu lueauzea, mnmte nuclear matter. The third categu-y, electronic
sys term, includes, narrowly, the system of electrons in a solid, and, more broadly, a

, wide variety of systems of great topical interest in condensed-matter physics (e.g. in
● high-temperature superconductivity). Other many-body systems could also be con-

sidered, such as collections of quarks in particle physics, and collections of electrons
in atoms and molecules. Although lack of space prevents us from doing justice to
these additional examples, the concepts we shall discuss are generally applicable to
all momentum-distribution studies.

A length scale appropriate to microscopic description of a given many-body syg.
tern may be taken as a typical interparticle spacing, while the binding energy per
particle provides a reasonable energy scale. The three classes of many-body problems
we have just delineated involve very different scales in energy and length, ranging over
many orders of magnitude. To make a meaningful comparison of system properties
and behavior, we need somehow to remove these large variations.

We begin by considering condensed systems of atoms: solids and liquids. A
typical interparticle spacing for atomic systems is on the order of ~, setting the
characteristic length scale. Typical binding energies for atomic systems are on the
order of meV, setting the characteristic energy scale. Numerical values are shown in
Table I for 3He, a “representative” atomic system.

Focusing on Fermi examples, how important are exchange effect~ in determining
the shape of the momentum distribution? A measure of the strength of exchange,
or statistical correlations, is given by the Fermi energy EF of the system. If EF is
large compared to the binding energy per particle, Eb, the Fermi statistics wilJ have a
profound influence on n(p), where- the condition EF << Eb implies that statistical
effects are unimportant and n(p) is well approximated by the classical result. For
liquid 3He we find ~~/EF z 0.5, indicating that exchange plays a substantial but not
ovenvhelrning role in this system.

As we shall see, experimental determination of n(p) involves inel~tic scattering
processes at energy and momentum transfer rr.uch larger than the characteristic
energy and inverse length scales of the systems under study. In neutron scatt wing
from atomic systems, momentum transfers

!
up to * 30 A-* and ener

Y
transfers

u up to a few eV are currently attainable. ince these values are much arqer than
the Fermi energy EF and Fermi momentum kF for bu!k atomic 3He (see ‘~”able I),
a measurement of the momentum distribution of this system would appear to be
experimentally feasible.

}Ve turn next to electronic s~stems. The unit of length conventionally adopted is
the Bohr radius aO = 0,5292 A,alsocalled the atomic unit (au). The radius r, of the
volume per particle, measured in au, lies in the range 2-6 for the conduction-electron
subsystem in metals. Hence the characteristic length scale is comparable to that of
systems of atoms like liquid helium. However, typical cohesive energies of metals, per
atom, run to some tenths of Rydbergs (the conventional unit of energy, 1? = 13.61
eV), so the characteristic energy scale is three orclem of magnitude larger than in
the atomic case. Values for the Fermi energy and momentum associated wi~h the
conduction electrons in sodium are quoted in Table 1. Comparing the binding and
Fermi energies of this system we find E’~/~F ~ 0.3. Thus, we expect statistics to
Ilave an effect on n(p) comparable to that in liquid 3He, though somewhat larger.

Expm-irnentally, X-ray Compton scattering is used to study the dynamic struc-
ture of electronic systeln9. Typical momentum and energy transfers employed in
cllrrcllt work are indicated in Table 1, J{lst u in neutron scattering from a systrtn of

] He ntoms, these can be much larger th,an the rrlevant Fermi momentum rind energy.
Tll~is we ngain infer that tile monlrntl]m distribution is an experimentally iK-wssIl}lt=

(l~lantity.



, lCIl~LIl IS tne rernu, Which IS five orders of ma nitude smaller than the ~ scale of
1 3the atomic and electronic systems. The standar unit of energy is the MeV, which is

b nine orders of ma~itude larger than for the atomic case, In infinite nuclear matter
the binding energy per part icle, Eb, is 16 MeV. The characteristic Fermi energies
and momenta of nuclear systems, entered in Table I, also differ from those of the
atomic and electronic cases by many orders of magnitude. Nevertheless, when we
form the dimensionless measure Eb/EF, we obtain a value ().4, putting nuclear mat-
ter somewhere between atomic and electronic systems in the importance of quantum
statistics.

TABLE I

SCALES

DEEP INELASTIC NEUTRON SCATTERING

1 Angstrom(~) = 10-8 cm
1 meV = 11.6 K

3He EF=5.0 K kF = 0.789 ~-1

Eb/EF = 0.5

X-RAY COMPTON SCATTERING

1 atomic unit (au) = 5.29 x 10-g cm
E = 13.61 eV

Na EF=3,23 eV kF = .486 p(au)

Eb/EF = 0.3

2.5 p(au) ~ Q <100 p(au)

10 KeV< E, ~ 400 KeV

QUASIELASTIC ELECTRON NUCLEUS SCATTERING

1 Fermi (fro) = 10-13 cm 1 GeV/c = 5.06 fro-l

EF=38.4 MeV kr = 1.39 fro-*

Eb/~F = 0.42

Q <10 f,-rl-’ (2 Gev/c) Jometimes quote Q: ==Q* – U*

500 \leV ~ E, ~ 4 GeV



rlenr.s 01 cne nuclear wave tunqtxon., ‘~hc momentum transfer; relevant to studie~ in1’ I the energy region of the quaselastlc peak, pmor to the onset of inelastic processes
● corresponding to the excitation of internal degrees of freedom of the nucleonic con-

stituents, reach only to 10 fm ‘1. This is just an order of magnitude larger than the
characteristic k ~ for nuclear systems, While the excess is not as large, in a relative
sense, as in the other two cases, important aspects of the momentum distribution will
be experimentally accessible here as well.

In summary: The similarities between atomic, electronic, and nuclear systems
are striking. Their characteristic energy and length scales may differ by many or-
ders of magnitude; yet they display a comparable balance of bindin and exchange

Jeffects. They are also similar in the sense that it is feasible to pe orm scattering
measurements for which the momentum and energy transfers are substantially larger
than characteristic values of particle momentum and energy in the ground state.
With some qualifications to be noted later, such experiments mav be considered to
measure the ‘pertinent momentum distributions. -
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Typical interaction potential for atomic, electronic, and nuclear,
systems. The interaction strength has been scaled by the ap-
propriate Fermi energy and the distance has been scaled by the
inverse of the Fermi momentum.

To commre the three svsterns in another wav. we mav look at the basic interac-
tions betwee”n the atomic, electronic, or nucleonicw~article~. As expected, these inter-
actions generally differ by many orders of magnitude in their strengths and ranges.
To make a serfiible comparison, we need to scale the potentials with suitable energy
and length meamres for the different systems. For the ener

Y
measure, we may adopt

the Fermi energy, and for the length measure, the inverse o the Fermi momentum is
chosen. (Again, comparisons are to be made for a given type of statistics, hence the
Fermi case. ) Fig. 3 juxtaposes representative potentials for atomic (helium), nucletar,
and electronic systems, scaled in this manner, Even when scaled, the potentials differ
by orders of magnitude. The helium potential is the strongest at short distances, its
core repulsion being very hard (but not infinite). The core of the nuclear potential is
twc orders of magnitude softer and the electronic (coulombic) potential is two orders
of magnitude weaker still.
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1 ple monotonic 1/r repulsive behavior, is quite different: while its core is very weak
. tin comparison with the helium and nuclear examples, this potential falls off very

slowly at larger r. As we look at larger distances the electronic potential becomes
stronger than the nuclear potential and ultimately surpasses the atomic potential.
These differences in the behavior of the basic two-body interactions have interesting
consequences for the respective many-body systems. Whereas the strong-coupling
limit is at high density in the helium and nuclear problems, it is at low density in the
electronic case.

Thus, while there are important similarities between the three classes of .mwtems,
there are import ant differences as well.

.

CALCULATION METHODS

Many theoretical methods have been developed to study the momentum
tribution of many-body systems. These may be divided into non-stochastic

dis-
and

stochastic approaches. - By the former we mean the more traditional, analytically
based procedures (like perturbation theory and hypernetted-chain methods) which
typically involve manipulations with field-theoretic operators or wave functions and
make heavy use of diagrams, before numerical work begins. By the latter, we mean
computationally -intensive procedures (like variational, Greents function, and path-
integral Monte Carlo methods) based on random-walk algorithms for evaluation of
expectation values or thermal averages, or for solution of the Schroclinger equation.
‘The various methods may be further classified according to their ability to handle sys-
tems with stronger interparticle couplings. At this point we shall make some eneral
remarks on the strengths and limitations of the most prominent approaches. f more
detailed review by Clark and Ristig,6 including a rather complete set of references,
appears later in this volume.

Non-Stochastic Method~

The most familiar examples of non-stochastic methods are ordinary perturbation
theory in the bare interaction, starting from the noninteracting system, and varia-
tional methods based on independent-particle trial wave functions. Neither approach
is useful for predicting the momentum distribution for the systems under study here,
either because of the strength of the repulsive core (atomic and nuclear cases) or
because of the long ranp of the interaction (electronic case). On the one hand, rear-
rangements or resum.rnations of perturbation theory are necessary, and on the other,
a viable variat ionaJ treatment must incorporate dynamical correlations among the
particles.

Electroriic problems (particularly those involving a uniform electron gas) can
often be successfully attacked with perturbation theory, provided the ring diagrams
are summed to produce a screening of the long-ran e Coulomb force. This approach
is usually framed in terms of Green’s functions. # he random-phase approximation
(RPA), or some variant of it, is used to sum the ring or bubble diaF am in the
perturbation expansion of the one-particle Green’s function.

Another non-stochastic approach to weakly-interacting electronic systems is
band-structure theory, which derives self-consistent one-electron wave functions using
a variety of methods including the local-density approximation, This is an eminently
practical and highly-developed method for treating the electronic structure of recal
solids where the lattice plays an essential role, and its successes within Compton-
scattering and positron-annihilation studies of momentum distributions have been
extensively reviewed elsewhere. 1‘7 The limitations of band-stnlcture theory become
apparent in dealing with strongly-correlated electronic systems, g ~andour f)v~~rvi~wof
calculationa.1 methods will focus on general approaches to strongly-correlated systems.
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the expansion converge, and if so, how fast? For example, perturbative approaches,’
‘ which re-surn only ring diagrams deteriorate or fail as the short-range core of the in-

● t~taction becomes stronger. They be in to deteriorate for strongly-coupled electronic
8systems, as represented, say, by the .ubbard model. They fail completely for nuclear

and helium systems due to their strongly repulsive cores.

Perturbative techniques can, however, Le extended to more strongly interacting
systems. Historically, this was first done by Bru.-ckner, 9 his ideas being systematized
in terms ot’a Goldstone diagrammatic expansion. 1~‘11 When strong repulsive cores are
present, it becomes imperative (as a minimum) to re-sum the particle-particle iadder
diagrams. This leads to “hole-line expansions” for the quantities of interest, which
have seen extensive use in nuclear-matter theory at not-tomhigh densities. However,
the ladder and self-energy resurnxnations which define Brueckner theory do not suffice
for very strongly correlated systems like the helium liquids.

In a few cases, analysis to all orders within perturbation theory can be carried out
LOyield valuable ezact results, even for very strong couplings. These results typically
invclve !Imiting conditions on one or mere of the relevant variables, iacluding density,
distant ‘, wave mlmber, and temperature. one such result is the pre~c~ion of a I/p
singularity in the ground-state n(p) of a Bose system3 like liquid ‘He. Anothel” is
the prediction of a Fe”rni-surface discontinuity in the momentum distribution of all
normal Fermi fluids. 12I:3

Self-consistent summation of rings and ladders, leading ultimately to parquet
theoryl’ offers hope for a comprehensive and quantitative microscopic theory of
stron Iy-coupled systems within the erturbative framework. Unfortunately, this ap-

% Yproac has proven exceedin ly difficu t to implement, especially for Fermi systems, In
fthe interim, variational met ods have come to the fore as the most practical means for

evaluating the properties of the helium liquids and of nuclear matter at high density.

In the variational approach, a ground state-wave function is chosen on the basis
of an intuitive understanding of the correlation structure of the many-body system.
The energy expectation value is then minimized with respect to variational wune-

Fters or functions appearing in the trial state. The most common trial wave unction
is the Jastrow form, ori inally motivated by the re uirement that short-rmge two-

f 1body correlations be inc uded in the wave function. t is remarkable that this choice
also provides for a correct description of the Ion -range correlations corresponding
to virtual phonons. Althou~h the Jrwtrow form 7cads to useful results for the sys-
tems under study, the predictions for properties like the ground-state energy and
r,lomenturx, distribution are generally only semi-quantitative.

Nfore sophisticated wave functions, incorporating further aspects of the correla-
t ion structure (triplets, momentum-dependent backflow, spin-dependent correlations,
noncentral comelations ...) are now in wide use. Quantitative results are obtained for
the ground states of liquid ‘He and 3He, and pre~umably also for the ground states

t
of nuclear an neutron matter. C rrelated variatiopl met da have not rea ed the

J k 9same state o refinement or pop arlty In apphcatlon to t e electron gas an other
electronic systems. However, they have been rather successful in this context even at
the simple JMtrow level (uniform 3D electron gas), or at the (simpler still) Gutzwiller
level. Their most dramatic ‘(electronic” success story is found in Laughlin’s theory of
the fractional quantum Hall effcct,ls

As described, the variational ap roach is limited tc the ground state, 11.>wever,
(f’variational ideas have been extende to excitations in the correlated randcmi-l)hnse

10117derived from the Dirac-Frenkel titne-dependvnt variationnJ prin-approximation,
ciple, Moreover, the wuiational approach has been extended to the evaluati~jn of
m~uilibrium properties of quantum fluidg at finite, but low, temperatures .*9



.-e U.au. wu WLCapeuLac]on vzuues and matrix elements with respect to correlated
. wave functions. This highly r mtrivial problem is discussed by Clark iilid Ristigd

and will not be considered here in any detail. Depending on the application and the
● .%phistication of the wave functions, higher-order cluster diagrams contributing to

correlated expressions may be either partially re-surnrned, approximated, or ignored.
Cument practicelg *‘o involves the use of “scaling procedures” to simulate the effects
of higher-c rder terms which are difficult or impossible to evaluate explicitly.

A deeper problem of more conceptual weight is the constraint which t}le choice
of wave function imposes on the physical description. Lackin the right intuition, the

$proposed wave function wdl not have su.fhcient freedom, an interesting phenomena
(for example, phase transitions) may be missed, There exist stability tests which
make this drawback less serious, but these tests usually refer only to local stability.
Recent work with shadow wave functions2i introduces a welcome flexibility which
reduces the reliance on intuition.

A related criticism of the variational approach is that improvements ,are not very
systematic. This criticism may be answered by an extension of variational theory
known as the method of correlated basis functions 22123 (CBF). h! CBF a basis of
functions is generated by applying a correlation operator determined Variationally, to
a complete set of model wave functions suitable for a weakly interacting system (e.g.
Slater determinants). This scheme combines the insights and techniques of the vari-
ational approach to strong interactions, with the formal advantages of perturbation
theory and other approaches (e.g. RPA, BCS, etc. ) designed for weak interactions.
Of course, the method will also suffer (in lesser degrees) from the same kind of con-
vergence worries which plague these underlying approaches. Although complicated
in appearance, CBF is one of the more efficient, quantitative, and powerful of the
non-stochastic approaches, yielding a variety of useful results for atomic, nuclear,
and electronic systems,

Stochastic Method~

The available non-stochastic techniques all experience some degree of difficulty in
handlin very stron

$ %
interactions. Such a difficulty is not intrinsic to the stochastic

approa es, althoug some “hangover” may be experienced since the implementati-
on of stochastic treatments usually relies on information provided by a prior nor~-
stoch~t ic study. Another (related) ad~ant age is that stochastic methods are immune
to the co~vergence roblerns which beset perturbative and variational procedures. On

fthe negative side o the ledger, stochastic methods suffer from the well-known disad-
vantages of computer-intensive, “granular” simulations.

The variational Monte Carlo (VMC) method contains basically the same physics
as the variational approach described ur,aer non-stochastic methods, However, a
hletropolis Monte Carlo a!gorithm is used to evaluate the mariy-body integrals. This
technique is superior to those employed in non-stl~chastic variational theory, such as
hypemetted-chain re-summation, since higher-order cluster diagrams are autcmlati-
cally included. The Statistic errors associated with the Metropolis algorithm can be
effectively controlled by variance reduction techniques. Perhaps the major concern
is that (for obvious practical reasons) the simulations are performed for a sample
of a few dozen or a few hundred particles, instead of extended medium. Prrimlic
I)oundary c~rldltior-rs are irnpmed in ~ fiite CUIM, with side kngth adjusted to give

tl~e pre-assigned average particle density. Finite-box-size effects can be significmlt,
rspvcially for the long-range behavior of the one-body density matrix, thot]gh they
arc generally believed to be of little importance.
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* equation in real time, which may in tum be solved by hlonte Car!o techniques. In

principle, this approach leads to the exact ground state. In practice, it works exceefi-
ingly well in application to Bose systems, such u liquid ‘He, where the wound-state
wave function is positive. ~g USUal, there are statistic~ errors (fising in the solution
of the Schro6dinger equation as well as in the evaluation of various quantities), but
a ain these Cm & controlled by ~OuS teckiques. There are also finite-box-size
#e ects, since again one must work with a kite number of aton-xq. In particular, the

size of the simdation box limits the accuracy of GFhfC predictions of the large-r
behavior oft he exact pl ( r ) and consequently the singular behavior of n(p) at small p
is missed. Othenvise, state-of-the art predictions for the momentum distribution and
the condensate fraction are obtained. 24

W%.ile the ~reat ment of Bose systems in G FMC is relatively easy, Fermi applica-
tions remain problematic. The antisymmetry requirement, a global property, is hard
to build into the diffusion algorithm, which is by nature local. [n straightforward
application, the fact that the wave function is not of one sign leads to an exponential
growth oft he statistical error. Neverth,~less, approximate realizations of GFhlC -e.g.
the fixed-node approximation and transient estimation-may be used to obtain quan-
titatively reliable results 24I*Sfor liquid 3He. Even so, much work remains to be done
to bring the fermion problem to an aesthetically satisfactory conclusion.

Apart from this specific Fermi difficulty, the GF\lC treatment should eventually
converge to the exact ground-state wave function of the fermion or boson system.
However, in practice, with finite running time, this majj not be the case. Importance
sampling is used to speed the convergence of the calculation, but it may also preju-
dice the final results. An irutial trial wave function, taken say fkom non-stochastic
variational theory, is co~only used M an importance function to select the most
likely configurations. If this wave function is not close to the tme ground-state wave
function, but represents instead some sort of metastable state, the method may not
get the chance to find totally new or unexpected features of the many-body system,

Recently, in a beautiful implementation of Richard Feynman’s view of qunn-
tuln theory, Ceperley 26 has developed path-integral Monte Carlo ( PIMC) met hods
to evtiluate the equilibrium properties of quantum fluids at finitetemperatures, The
calculation begins with an accurate representation of the density matrix at high tem-
peratures, A lower-temperature density matrix is then constructed from a pnth inte-
gral over products of high-temperature density matrices. Ivfetropolis-type mdorithms
allow accurate results to be obtained for the properties of liquid ‘He over a broad
range of temperatures and pressures,

lhl PULSE APPROXIMATION

III previous sections we have compared and contr~td the theoretical issues which
are important to momentum distribution studies in different systems, As we scan frotn
iLtotIllc sYste~ throll~h electronic nrl[i fitlc]eu gystemg d] th~ way to particle physics,
we Imve covered ten orders of ~lagrlittl~e rwge in cnergie~, momenta, and intermc.

tion strengths. Nevertheless, we have found many common conceptual elements and
calculational approaches, In the present section, we ~how that experimental stud-
ies of momentum (Distributions &I shpre common themes across this extrwmiiniuy
(Iynamic rlange. i[ornenturn {li~tribtltit)r~q are ils~]ally measured by scntterirtg rxprri-
nwnts in which the ener

F
and rncm~cntum transferred iare vmy high compmred to tllc

F’nergies and momenta c aracteristic of gro{lnd-stnte properties and collective lwhnv-
i.~ro In this limit, the scattering law may }J~ relateti to the momentum (iistri})llti(~n
})y invoking the ~mp?d~e approzarraafton, w}llc~ n.qs,,nle~ t)lat a sit]@e mrtirb of tlie

/sy~tcrn iJ stmck by the scattering pr(]t)e, MId t}lat thig part~ck recoils rwly frotn tl)e

r(;llision.



. --------- .-. vti,.is . . . ,,, C v is UWJ w measure n~p~ m electromc systems, and electron
scattering at CeV energies is used to measure n(p) in nuclei and inside nucleons.

. !n all cases, the obsemation of appropriate scaling2g (e.g. “Y-scaling” ) behavior
of the cross section is !~resumed to indicate that conditions for the validity of the
impulse approx~.mation have been approached. Violations of this scaling are also
of intarest. They can arise from excitation of internal degrees of freedom ( “scale
breaking” ), or they can be due to breakdowns of the impulse approximation such as
final-state interactions of the struck particle, etc. In all cases, the measured quantity
is a “Corn ton profile,”

f
with amounts to a projection of the momentum distribution

onto one imension. The various experimental settings entail common data analysis
and methodological questions. In this section we shall elaborate on these common
elements of the measurement of momentum distributions.

Deep-Inelas<ic Neutron Scattering

The scattering of neutrons by an atomic system is described by the double dif-
ferential scattering cross section, which is the scattering per unit solid angle and per
unit energy. This is calculated in first Born approximation, the interaction of a neu-
tron with an atom being expressed as a Fermi pseudopotential proportional to the
scattering length. In neutron scattering the cross section is traditionally written as30

({~t7 ~T k,
——S(Q, W) ,

m=4rkf
(5.1)

where UT is the total scattering cross section for a single atom and k, art i k are
Lthe initial and final neutron wave vectors, The interaction of the neutron wit the

sample is described by the dynamic structure factor +5(Q,w), with energy transfer
u = (h2/2mm)(k~ - k?) and momen’.um transfer Q = I&i - kfl ,

The dynamic structure factor is the Fourier frequency t rr nsfonn of the density-
density correlation function of the sample, It is convenient to separate the structure
function into two components

15.2)

In the tirst term, SCOAis the coherent 9trWtUrfi faCtOrJi and represents detlYity fluc-
tuations which involve diflerent atoms, Thus

whine i,(t) and ;)(t) are the time dependent positions of the two atoms, mnd W.
is the wave function for the initial state of the system before the scattering, This
t~’rm describes the collective behavior of rnnny atoms including collective excitations,
crysta]linc order, etc. The second term sln is t}~e incoherent ~truct:lre fmctor, which
tJIIly involww the motion of single nt(ms. AgNn, this mmy be writtm M the Fotirif*r
trnnsform of a time correlation function
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!’, to the interatomic spacing. For Q in excess of these momenta, the exponenti,ds in
(5.3) will then oscillate rapidly from atom to atom and, on average, cancel out. There-.
fore, SCO~will not contribute in the high-Q limit and only S,~c will be left. This is the
limit of importance to momentum distribution experiments, so we may focus on the
scat tering from individu~ atoms, commonly referred to as “Deep- Inel~tic Neutron
Scatter ing,”32

If, in addition, the energy transferred to an atom by a neutron is large compared
with the potential energies due to neighboring atoms, the finai state of the struck
atom will then be that ~f a free particle. Under these conditions, the incoherent
scattering function reduces to the well-known “Impulse Approximation”33 (1A), so
called because the scattering particle is supposed to impart a momentum to the stru-k
atom in a time so short that neighboring atoms are unable to respond. Then

(5.5)

where Al is the mass of the struck atom.

The scattering law (5,5) exhibits characteristic features which have often been
used as an indication that conditions for the validity oi the IA have been reached.
The scattering is centered at and symmetric about the recoii energy w. = Q2/2M.
In neutron scattering the location of the scattering peak is determined by the m~s of
the struck particle and different constituents in the sample can be separated by their
different recoil energies. In addition, the width of the observed scattering, at constant
Q, is proportional to Q times the width of the momentum distribution. ln the IA
limit, the scatterin~ is no lonz~. a function of the enern and momentum transfer
separately, For iso~ropic systewms, where n(p) depends
the scattering becomes a function of a single variable

“%(”-$%) *

oily on the magnitude of p,

(5.6)

which is just the longitudinal momentum, pll, The scattering law may then he rewrit-
ten

Q

I

m
~/A(Y) = ~SfA(Q,@) = + ,Yl dp pn(p) . (5.7)

The function ~/A(Y) is known aa the Compton profile, The asymptotic behavior
expressed by (5,7), called y scaling, waa first emph~ized by West34 in the context
of electron scattering from nuclei, lt is of course more broadly applicable to scat-
tering processes that meet the criteria for application of the impulse a proximation.

Eon the other hind, we must oint out that Y-scaling is a necessary ut not m suf-
rficient condition for validit o the impt~ke approximation, For example, in systems

with hard-core potentials, b -scaling is predicted at high Q even though the impulse
n;)prox~mation does not hold. as136

As M illustration of this kind of scaling, consider the scattering from lif~uid
llelium,3’ plotted in Fig. 4 M J(Y), ot Q’s of 7, 12, and 23 A-I . \VIIwthe
rxpcrimcnta,l data for S(Q, W) is ~Jlotted versus w (not shown), the ~)mk crntrrs
Nrld widths vary greatly with Q, I{owever, when converted to J( Y) those rrsults
l~icrly (Iemonstrnte the predicted Y.scding bchnvior, The scottefing is symmetric iui(l
rr[lt(’rrd nt Y=(j, ntid t}le wi{{t}l of t}~e wmtteri[]g is indppwldent of the ?il(ltllvlltllltl
trnnsfrr Q of the meamremcnt,



-.,” u~i~=t Uevlatmns Irom tne predictions of the impulse approximation are of great
importance in experimental determinations of the momentum distribution in rm.i

. e~penments where Q, while large, is still finite. Such discrepancies have been termed
“Final-State Effects,” because they are thought to arise from the interactions of the
struck atom with neighboring atoms. Another factor may be the binding of the target
atom in the condensed phase, an ‘initi~ state effect’ which is ignored in deriving the
impulse approximation. Deviations from the IA have received considerable theoretical
attention and will be discussed more fully later.
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Fig. 4 Inelastic neutron scattering from liquid 4He at momentum trans-
fers of 7 A-L, 12 A-I (at 1,0 K) and 24 A-1 (at 0.35 K). The
results, plotted as J(Y), all fall on approximately the same curve
illustrating the Y-scaling behavior (from ref 37).

Compton Scattering

An appro riate probe of electronic systems i~ the photon whose couplin to
[ bthe electron c arge is ahJO well described il~ first-order ertur ation thcmry,

f
% he

theoreticid discussion roceeda in close malogy with that or neutron scattering from
\atoms, Accordingly, w en the momentum transferred by the photon is huge compared

to the interelectronic spacing, the properties of individual electrons are probed, This
condition, corresponding to what IS termed C!ompton scattering, is met for photons
at hard ,X.ray energies (tern of KcV). Qmpton scattering is the basis of the earliest
of the momentum distribution experiments. 36 it hau yielded considerable informnticm
on the electronic structure of syetems in condensed phases, 1

Tile cross section for the scattering of photons by a system of electrons in thv
}ligh-Q regime is

. .,



cJc L&4uLA. =S m cne impulse approximation to the neutron-scat terin
%

proble’~~, th~
double-differential cross section in the Compton-scattering case may e expressed in
$erms of a single scaling variable, Y. It is given by some trivial factors, times the
Compton profile .-*

(5.9)

Here, we have written the Compton profile in a form which highlights its interpre-
tation as the longitudinal momentum distribution, obtained by integrating n(p) over
the components of p transverse to Q.

The cross section for Compton scattering cofisists of a spin-independent and a
spin-dependent component. The spin-independent component, which corresponds to
the dominant mechanism for the scattering of unpolarized X-rays, is associated with
the elementary Thompson cross section

~lo=(+)’ (5.10)

where e is the charge of the electron and c is the speed of light. In measuring this
compment of the scattering, one probes the full electronic n(p), irrespective of the
spin of the electron.

The spin-dependent component

%lo=(s)’(:)’(-)s”(~c”’(’)-~’‘511)
where II and ~z are the incident and final wavevector of the photon, # is the scat-

tering angle, and ~ is the spin of the electron, This co~,~ponent is only of interest
for polarized radiation. Using polarized X-rays, the momentum distribution of one
particular spin state can be memured. With the recent developments in synchrotrons
radiation sources. magnetic Compton scattering studies of the spin-dependent me
mentum distribution have become practical.

In Compton scattering, the struck particle is always an electron and the scatter-
ing peak is always centered at Q2 /2rnc. However, the structure of the scattering peak
may be used to separate the cent ribut ions from Merent ‘types of elect rons,’ such as
conduction and core electrons, The width of a Com.pton profile is proportional to
QAp/m4, where Ap is the width of the momentum distribution. The core ●lectrons,
which are tightly bound, will have a broad profile, while the conduction electrons,
which are in extended plane-wave states, till have a relativei narrow profile, Fig. 5

riifustrates this distinction using the Compton profile of bery IiUrn. The narrow con-
tribution results from the conduction electrons, while the broad backgrmlnd is dtle to
the tightly bound core electrons, The sharp change in slope of the scattering, which
is due to the jump in n(p) at the Fermi surface of the conduction electrons, is also
clearly visible.
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Fig. 5 Schematic illustration of the Compton profile from beryllium.
The broad component, which haa been extended throu h the

%central region bv the dashed line, is due to the tightly ound
core electrons. ‘1lie namow component is due to the nearly free
conduct ion elect rons, The sharp change in slope at the Fermi
surface is clearly visible (from ref 28).

Quasielaatic Electron.Nucleus Scattering

The appropriate probe for studying the momentum distribution of nucleons in
nuclei is the electron, which couples electromagnetically to nucleons, The situation
here is much more complicated thrm in electronic and atomic systems. It is im-
portant to use relativistic kinematics in describing the scattering. Moreover, the
nucleon-nucleon interaction is incompletely characterized, and its complexity makes
theoretical calculation difBctdt, Most important, internal degrees of freedom of the
nucleons are easy to excite with the energ

J
and momentum transfers required to

approach conditions for validity of the imp se approximation.

The impulse-approximation result for the scattering of electrons by the nucleus
is

where v is the single-particle level dc,~encrricy (=4), n(p) is the momentum (distribu-
tion of nucleons in the ground state of the tnxget, and dcr\Q)/dME is the cross section
for electron scattering from a single nuclmm leading to an excitation of the nu(:l~m
with rest mass kfs (e,g, excitation of the A( 1238 hfev)),

Y-waling is prulictrd by the iinpulw npproximntion only if subtluclwmic (Irgrrm
of freedom me not pxcited, and the final mass of the recoiling constituent(~) ( ,\fI; )
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as “quasielastic electron-nucleus scattering” ( QE~NS), ~l~~&-u~per bounds on t. ‘e
.’4 applicable momentum and energy transfers. The associated scaling function is given

. by.

FIA(Y) =
Qs[A(Q, w)ae,(Q) v -dp ~n(p) ,

(d+ Al) != 472p ,y,
(5.13)

which is similar to the formulae arising in deep-ineIastic neutron scattering and Comp-
ton scattering. With relativistic kinematics, the scaling variable Y now takes the
somewhat different form

(5.14)

Because in QENS the ener
Y

and momentum transfers are iimited by the necessity to
avoid the excitation of nuc conic internal degrees of freedom, it is difficult to achieve
moment urn transfers more than a few times larger than the characteristic momenta of
nuclecm in a nucleus, and Y-scaling is observed only for negative Y. This Y-scaling
portion of the cross section corresponds to the high-p components in the tail of the
momentum distribution. Of course, it is just these high-p components which provide
the most information on short-range correlations in nuclei.

Another conse uence of the limited ranges of ener and moment urn transfers in
% TQENS is that the o -shell character of the target partic e in the many-body medium,

prior to collisi~n with the probe, can be far more important than in neutron or
Compton scattering, Thus, while scaling behavior may still be observed, one needs to
modify the scaling variable to take account of the binding of the constituent particles.
In particular, sick and coworkers39 140proposed using Ys = pll as determined from
the kinematic relation

[(P+ Q)2+hf2)’/2-M = u-SE , (5.15)

where the constant shift SE is a suitable average separation energy for removal of a
nucleon from the nucleus, and irrelevant recoil effects have been omitted. Improved
scaling plots of data are obtained in terms of Ys. Other forms for the scalin variable

khave been proposed as well, notably in attempts to incorporate effects of “ al-state
in~eractions” into the analysis.’l

As an example of quasielastic electron-nucleus scattering, analyzed in terms of
the variable Ys, consider the results for a carbon target40shown in Fig, 6. For
Ys below -0.1, the experimental results nicely illustrate the Y-scaling redactions.

J’Aro~d Ys = O and above, the breakdown of Y scaling is seen as intern degrees Of
freed~m of the nucleon are excited.

The behavior illustrated in Fig. 6 is all the more impressive when one notes that
the scattering intensity changes by almost four orders of magnitude over the kinematic
range in YS for which ~caling appears to hold. In contraqt, the Y-scalin plot for 4He
shown in Fi . %4 extends over lem than two orders of magnitude in t e scattering
intensity, T\is dispnrity is due to the much higher back rounds which

k r
revail in

current neutron-scattering ~xperiments, as comp~ed with Q NS. In the nuc em work,
the results found in the regime of large - Y~ are suggestive of an exponential fall-oif 0[
the nlomenturn distribution which might be a general fca’ure of strongly-interacting
ninny-body systems, It would be of great interest to test this conjecture in future
neutron-scattering experiments on quantum fluids,

Before turning to other issues, we would like to address ‘he unfortunate semantic
confusion which can arise in t ing to compare the thxee types of experiments: flcPp-
inela. stic neutro,: scattering, ? ompton scattering, and quasielastic elect ron-nlwlells
scattering. In condensed-matter physics, “Quaai.Elastic Neutron Scattering” ( :dw)
QENS) refers to scattering m~asuremcnts in which the energy trnnsfer is slt~i-dl, M
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refers to any scatt&ing process in which {he initial and firm.i energies of the scattering
. I (probe) particle are significantly different. “Deep-Inelastic PJmt-on Scattering” refers

. $0 higher-energy-transfer experiments which are apt 1y described in terms of scat t enng
off single atoms in condensed-matter systems. In nuclear physico, inelastic scattering
refers instead to cases in which there is excitation of nuclecmic substructure, including
any process which creates new part icles. Thus, even t hougb the energy of the scat-
tering electron may change substantially in qu=ielastic electron-nucleus scattering,
the process is termed “quasielastic” because the recoiling const,ltuent particle has the
same rest mass as it did before the collision, Finally, “Deep-Inel,astic Electron-Nucleus
Scattering” refers to experiments which are best described in terms of scattering off
the probe electrons off the quark constituents of nuclems.
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Fig, 6 Quasielastic Electron Nucleon Scattering (QENS) from laC at

several different moment urn t rrmsfem. For Y > .1 GeV/c the
results all fall on the same curve, illustrating tho Y-scaling be-
havior. Y-scaling breaks down for larger values of Y due to the
excitation of internal degrees of freedom of the nucleon (from ref
40).

Final State Effecti

As described above, the measurements of the momentum distribution in atomic,
nuclear, and electronic systems by scatterin

R
ex~~enments all depend implicitly on

the validity of the impulse approximation. T e impulse approxi.,~ation assumes that
the particle probe (neutron, photon, electron) scatters OH a single particle (atom,
electron, nuchmn) in the many-body system in n time so short that the pnrticlcs
neighboring the struck particle have no time to react to the perturbation caused by
the probe, The response of the struck particle is determined entirely by its initial
momentum distribution, and it recoils from the collision in a free-particle state of high
momentum and energy. obviously, this descriptiola becomes more accurnte tile }llgt~m
the momentum and ●nergy transferred in the scattering process (i.e. the shortm the

prob~/struck-pr@ icle interaction time), and the weKker the interactions brt ,wwn the

struck particle and its neighbors.
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atom-atom interactio&; in nuclear problems, from nucleon-nucleon interactions; and

. in Compton scattering, from both electron-electron and elect inn-ion core interactions
and orthogonalization. The important questions then are the size and form of the
deviations from the impulse approximation and the extent to which they li-mit our
ah ility to infer the single-particle momentum distribution from scattering data.

At high momentum and energy transfers, the most important deviations from the
impulse approximation are due to collisions of the recoiling particle with its neighbors,
which are called final-state effects. Hohenberg and Platzman33 considered this prob-
lem for deep-inelastic neutron scat tering from helium. Elementary arguments !ead
to the prediction that the impulse-approximation result will experience a Lorentzian
broadening with width

AYFWHM z p~t.t(Q) , (5.16)

where acOt(Q) is the atom-atom scattering cross section. Heuristically, in terms of
the uncertainty principle, this broadening is due to the finite ‘lifetime’ of the struck
particle before it collides with it~ neighbors. The simple result (5.16) for the width
of final-state broadening holcu in several of the modem theories for FSE. However,
there is much debate over the details of the lineshape. For one thing, the origi .al
Hohenberg-Platzman Lorentzian-broadening model cannot be rigorously correct since
it violates the W2 sum rule on S(Q, w),

Equation (5. 16) suffices to indicate the properties which are most important in
determining the FSE in real systems, FSE are lar er for stronger interactions between
particles and lower momentum transfers. 3Two i ealized examples bracket the h s-

[Ylcal cases: In the noninteracting gas, FSE are entirely lacking, and Y-scaling o ds
trivially, At the other extreme of a gas of hard spheres, FSE are always present, even
at infinite Q, Nevertheless, as we have already remarked, Y-scaling is predicted for
the limit in case of hard-core interactions even t bough the impulse approximate ion

tis not vali , The repulsive cores for the real systems of interest to us are plotted
in Fig. 3. (The attractive portion of the potential plays a negligible role in FSE. )
Real systems may be ranked in tfe~cend;ng order as follows, according to the strength
of the core potential, ap ropriately scaled in terms of the characteristic momenta:
atomic systems such as Eelium quantum fluids; nucleons in nuclei; electronic sy9-
tems; and finally color neutral systems of quarks and gluons. In ascending order,
the ranking of the corresponding inclusive scattering experiments according to max-
imal momentum transfers, again scaled with characteristic momenta, is: quasielastic
electron-nucleus scattering; deepinelastic neutron scattering; Compton scattering;
and deep-inelastic scattering of electrons from nucleons (which really refers to scatter-
ing off tieir constituent quarks and gluons). Thus, FSE are expected to be significant
for both deep-inelastic neutron scattering (DINS) on quantum fluids and quasi-elastic
electron-nucleus scattering (QENS), while they are more readily avoided in Compton
scattering cm electronic systems and are absent in particle physics.

An important consequence of (5, 16) for deepinelastic neutron scattering is that
the approach to the i~apulse approximation will be very slow with increasing Q,
because the otOt(Q) decreases logarithmically with Q for He-He scattering. Therefore,
iwdium is ver close to a hard-sphere system wilere approximate Y-scaling behavior is

tobtained wit out the i~puise a proximation being valid. The final-state broadening
Einterferes with observation of t e features in the molnentum distribution which are

the most interesting, i.e. the Bose condensate peak in 4He and the Fermi surface
discontinuity in ‘He, While in QENS the afOf(Q) falls more rapidly with increasing
Q, the obtainable Q’s are comparatively much smalier when scaled by characteristic
[ntmlenta.

Any attempt to determine moment~lm distributions in DINS and QENS [nw+t
somehow take into accot~nt the find-state effects. At present, we dept:nd oil tlwc~
Icticid calculations to provide the appropriate corrections. Unfort[mately, this wl(ls
nnother layer of complication and uncert,tinty to the interpretation of the experimen-
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o quantitative characterization of FSE presents a major challenge for many-body the-

. cuists. Apart from highly nontrivial dynamical considerations, this problem involves
aspects of the strongly-interacting gro~d state (e.g., the two-body reduced density
matrix) which are difficult to evaluate. However, if we assume that the many-body
calculations of momentum distributions are correct, theories for FSE can be tested
using scattering data.42

The recent non-Lorentzian broadening theory by Silver43 for 4He, based on earlier
work by Gersch and Rodriguez44 yields the broadening function shown in Fig. 7,
which is to be convoluted with the impulse-approximation prediction, Eq, (5.7),
to obtain the predicted scattering. While the FWHM of the function in Fig. 7
is comparable to that from the Hohenberg-Platzman Lorentzian-broadening theory,
Eq. (5.16), Silver’s theory has negative wings at large IY[ so that it satisfies the U2
sum rule which requires that the second moment of the broadening function be zero.
The additional physics which this theory takes into account is the pair-correlation
function of the interacting ground state, which governs the collision rate as a function
of recoil distance. The overall effect of final-state broadening predicted by Silver is
much smaller than in the original Hohenberg-Platzn-mn t reatment, and it produces
excellent agreement with the recent experiments of Sosnick et al. as discussed further
in the next section.4s

I I i 1 I I I I I 1
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Fig. 7 Final State Effect broadening function R(Y) for 4He. The width
of the central peak is approximately po(Q), where c(Q) is the
atom-atom scattering cross section, in ngreement with simple
‘lifetime’ arguments. The negative wings are required to satisfy
the Wa sum rule (from ref 43).

Scale Dwbking

Deviations from Y-scaling may ,arise from final-state interactions, but a more
fundamental cause is the excitation of internal degrees of freedom of the constittlent

1
)articles of the Yarn le. The latter effect is often referred to as “scale break ing. ” \Ve

Rlave already seen t at such scale breaking may occur in the nuclear cout~xt. It is
tnlso present in memurements of nlo[nentum distributions in other kinds of syston~s,
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. First, consider the s attering of ne~ltrons by a collection of atoms. Fig. 8 shows
& overview of the scattering function in the Q - w plane for a simple atom with no
internal excitations. At low Q and w the scattering is due to collective excitations
– phonons, ~otons, diffusive modes, Bragg scattering, etc. At higher momentum
transfers the collective excitations are damped out and the scattering is dominated
by single-particle excitations. Finally, at large enough Q’s, the scattering is described
by the 1A, and information on n(p) can be obtained.

fi

Ii!

S(6,E)

/’.
, y~/

Q\ \ ~ = Q2/2M

UQUQ

M1<M

Fig, 8 Schematic of the dynamic structure factor S(Q, w) as a function
of energy and momentum transfer. The scattering at low Q and w
is dominated by coliect ive excit at ions - phonons, rotons, diffusive
modes, Bragg SC<ttering, etc. At hi her Q and w the collective

7excitations are damped and the sing e particle properties deter-
mine the scatterin .

i
At very high Q and u the scattering is

described by the I . In this region the peak is centered at the
recoil energy (Q2 /2m) and the width of the peak is proportional
to Q, The scattering from

Y
articles with two ditierent masses

is shown to illustrate the abi ity to separate the scattering from
different constituents of the sample is the IA regime (From ref
46).

Scale breaking can be illustrated b the scattering from a molecule which has
{both translational and internal degrees o freedom. Bulk molecular hydrogen furnishes

an excellent example. The translational and interml modes (the latter consisting of
vibrations and rotations of ihe molecule about its center of m=s) are essentially
decoupled, The IA is easily generalized to give

where fn and Wn are respectively the structure factor and energy of the nt* intcrrml
excitation. Fig, 9 shows the scattering from hydrogen” when two internal exl:ita-
tions, rotational excitations in this case, are excited, The rotational excit~tions shift



. ~WU OIiJLUCUpw.m, wrucn can De resolved m this case. Y-scaling breaks down when
multiple internal excitations are excited. At low energy transfers, only the first rota-

. $ional excitation is excited and a unique scaling variable can be defined. However, at
higher energy transfers many different excitations contribute to the scattering, each
centered at a different ener~. It is clear that no unique scaling variable can be defined
in this case and that. Y-scaling will break down.

!

Fig. 9
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The observed scattering from liquid and solid para-hydrogen.
The crosses are the experimental results, The dashed lines are
the predicted IA scat te~ing from the hydrogen molecule when the
J=O to J=l (14.7 meV) and J=O to J=3 (88.2 VI,SV) rotational
trmsitions are excited (from ref 47).

The situation is similar in nuclear physics. Fig, 10 shows an ovexview of the
nuclear response f’mction. The resemblance to Fig. 8 for the atomic case is striking.
At !mv Q and w, nuclear response is dominated by elastic scattering, by inelastic scat-
tering to low-lying states, and by collective excitations such as the giant resonances.
At higher momentum and energy transfers the scattering is described essentially by
the impulse approximation (region II), Y-scaling applies only in this region. At even
higher n~omenturn and energy transfem, nucleonic excitation and particle creation
break the scaling behavior. Finally, at extremely high energies scaling behavior of a
different sort, associated with electron scattering from the quark constituents of the
nucleon, sets in, (For further details on deep-inelcwtic scattering from nucleons and
“z-scaling,” see the article by West in these proceedings.zg )

As an example of scale breaking in nuclear physics, refer once again to the mea-
surements on l*C plotted in Fig. 6, At low momentum transfers, the quasiel~tic
scattering can be described by YG5scaling up to Ys = -0.1 GeV/c or so. However, ns
the incident energy is increased, more energy is available to create internal excitations
and Y-scaling breaks down at lower and lower values of Ys. Thi: is exactly analogous
to what is seen in neutron scattering from molecular hydrogen.

$Veemphasize that scale-breaking phenomena have nothing to do with the break-
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breaking (as the term is conventionally understood) is due to the excitation of inter-
,“0 nal degrees of freedom of constituent particles. In principle, momentum distributions

. Could still be determined in the presence of scale breaking by inverting a more general
imFulse-approximation formula, such as eq. (5.12) or eq. (!5,17). However, this has
yet to be attempted in practice.

NUCLEAR RESPONSE FUNCTION

i

R (~,W)

GR

HI0- 41’MV, mm , -z GeV w

,.

Fig. 10

z z mm Z

Schematic of the nuclear response function J?(Q, w) as a func-
tion of energy and momentum transfer, The scattering at low
energies (region I) is dominated by the elastic peak and inelastic
scattering from low-lying states and the giant resonrmces (G R).
At slightly higher energy transfers (region II) guasifiee scattering
(QFS) from nucleo.ls initially bound in the nuclear medium is
observed. This is the region where the momentum distribution
of the nucleons is accessible using QENS, At larger energy trans,
fers (region III-IV) sufficient energy is available to create pions
and to excite the nucleon (A, N“, resonances, etc.). Finally, at
very large energy and moment urn traders (region V), elect rons
are scattered directly from the quark constituents of the nuchmns
(from ref 48).

Limitation on Determining n(p)

The impulse approximation provides a simple relationship between the single-
particle momentum distribution, n(p), rmd the observed scattering expressed in terms
of a Compton proille, J(Y), The experimental goal is to extract the momentum dis-
tribution from scattering measurements. Unfortunately, the extraction is hnmpercd
by the fact that prominent - and physically interesting - features in n(p) may not

be strongly reflected in J(Y), due to tll~ integral form of the impulse-approximation
relationship (cf. cqs. (5,7), (5,8), (,5, i2), and (5,17)),

TO illustrate this fact, consifier the ground-state momentum distribution of lill-
uid 4 I{e. Fig, 1la shows the results of two different rnicrmcopic calculations, lm.wi

49 HNC/S) tcchniqucs, In both cases, n(p) hns n {Ivlt.aon GFMC24 and variational (
function at p = O representing the Ilose condensate, with condensate frnction no =!)42
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they differ markedly at sm-dl but finite p. The variational calculation reproduces the.

‘ P-l singular behavior at small p which is due to coupling of long-wavelength density

fluctuations to the condensate. On the other hand, the GFMC result for n(p) shows.
mo sign of this singularity, because of the finite size of the simulation box. Thus,
while the two results for rI(p) are palpably different, the corresponding J(Y) curves
generated by the impulse approximation (Fig. 1lb) differ only very slightly. When
the respective impulse-approximation results for J(Y) are in turn broadened by the
final-state effects given by Siiver’s theory 43 ~‘lg. 1lc), the predictions corresponding
to the two microscopic calc~lations become indistinguishable. We conclude that the
scattering experiment is insensitive to the singular behavior of n(p) at small p which
accompanies a proper treatment of long-range correlations. This insensitivity is ob-
viously due to the fact that, in the isotropic case, J(Y) reduces to an integral over
pn(p),

Fig. 11
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Illustration of the relationship between n(p) and J(Y), a) shows
the results of GFMC24 (solid curve) and variational’g (daahed
cume) calculations of n(p) in the ground state of liquid ‘He, Both
calculations predict a condensate fraction of 10 Yowhich gives a
&function at p = O (not visible in the variational calculation). In
addition, the variatiomd calculation predicts a singular behavior
at small p which is absent in the GFMC result. b) shows the
effect of transforming n(p) to J(Y) usin (5.7), The 6-function
is still present. tHowever, the singular ehavior, which is the
dominant feature in the variational n(p) at smtdl p, io now much
less prominent, c) shows the results of including the final state
broadening shown in Fig, 7, The two curves are now newly
indistinguishable,

The above comparison documents nn important limitation on the nbility to Px-
tract information on the momentum distribution from scattering memmremcnts. ‘ll\c
physically measured quantity is the Compton profile J(Y), not the momentum tlistri-
hutioti n(p), While, in principle, n(p) COI1l(! be obtn.ined by numerical ditfermltiutifm
of J(Y) data, it is clear that excc]lcnt statistics - perhaps ~lnnttminnhle in l)rnc-
tice - would be rrquired to distinguish experimentdy between the two microwol)ic”
tulclllntions for n(p),
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To round out this overview we present a few examples of momentum distributions. In atomic, electronic, and nuclear systems. We give a sarnplin of both theoretical

ka.ld experimental results, obtained both for classical systems, w ere statistics do not
play a significant role, and for quantum systems, where they do.

Cla.5sical Systems

In atomic systems we encounter numerous examples in which the momentum
distribution assumes the clruwical Maxwell-Boltzmann form. Except for the lighter
elements, such as helium and hydrogen, the quantum nature of the constituent atoms
plays a minor c-r insignificant role in the momentum distribution. ln generrd, the
interact ions between the atoms are relatively strong, whereaa zer~point motion is
small. Accordingly, there is little overlap of the at ornic wave functions in the con-
densed phases, which means that exchange effects are unimportant. Then it is an
excellent amxoxirnation to treat the atomic ‘rm.rticles’ classically, with quantum ef-
fects includ;d

I
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perturbatively as required. “
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Fig. 12 The normalized momentum distribution for liquid neon at T=29.6
K. ‘The dots are the experimental results. The solid line is a Gaua-
sian, the classical for.~ for n(p), w]~h the same root-mean-square
moment urn (from ref 50),

Fig. 12 depicts the momentum distribution of liquid neon at 29.6 K, N in-
fvrrcd from inelastic neutron-scattering mtmurements,so The scattering results nre
well described in term of a simple Gnumian form for r~(p), in accord with th.* clnssicd
~mdiction. For given particle mnss, the width of the classical momentum distrihtltion
ISdetmmined by the temperature of the system, The average kinetic energy per ntl~lt],
which is proportional to the width of the motnent~lm distribution, is then ~x~)rrtrd
to )~ave the familiar i(leal. gaa wdue 3&n’I’/2, The kinetic energy extracted from the
inferred tnornenturn distribution for neon is 48,2 K, which is wxnewhnt higher thnn
tl~e expected vnlue of 44.4 K,

The (li!~erm~ces between thr tnrwq~~rw!M)(1cxpectr(l kinetic erwrgitw for t~t~flnf-nl~
l)? nttnbuted to qtlantum ,,ifectq, These mre mall, although ohwrvnhle htvnuw wm
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4 comes from the small zero-pcint motion of the atoms. When this effect is small,
● corrections of increasing order may be made using the series

3kBz’(1 + &8/T)2<K>=~ - +(W)’ +“ “ ‘) ,
.

(6.1)

where t12 = (h2/3mk2) < A@ >. The quantity A@ is the Laplacian of the potential
energy, In the solid phase, the form of the corrections for zerm point motion is very
similar, the role of 8 being @ayed by the Debye temperature, 61n. Returning to the
comparison of kinetic energies for liquid neon and incorporating the qua:tum zero-
point correction, one obtains a theoretical rediction for the kinetic energy of 49,5 K,

Rconsiderably improving the agreement wit the measured kinetic energy,

Liquid 4He provides the most celebrated example in which the Bose character of
the constituent particles has a crucial influence on the properties of the many-body
system, and especially on its momentum distribution. The interatomic potential in
helium has a weak attractive portion and a condensed liquid base doe~ not form, at

Fvapor pressure, until the temperature is decreased to 4.2 K. ndeed, the interactions
are so weak that the system remains in a li uid phase down to zero temperature,

11when no external ressure is applied. Due to t e weak attractive interactions and the
\light mass of the elium atom, the quantum zero-point motion is very large in the

liquid. This implies a ver large overla of atomic wave functions naively proposed
to describe the system, 6 Yorresponding y, exchange effects are expected to be very
important,

The hi h temperature properties of liquid helium are similar to those of conven-
Jtional liqui S. However, when the tern erature is lowered to about 2,2 K there occurs

a phase transition from liquid helium f to a new phase, liquid helium 11, The transi-
tion is signaled by a sharp feature in the specific heat - the famous A-point anomaly,
Liquid helium 11, often called the superfluid phase, appeara to contain a au erfluid

Ycomponent which flows without viscosity md is responsible for an anomalous y large
thermal conductivity. Normal dissi ative effects are attributed to a normal-fluid

fcomponent, According to this “two- uid model,” the fraction of superfluid incre~es
to unity at absolute zero, The success of the phenomenological tw-fluid picture is
thought to be indicative of the appearance of a Bose condensate in the momentum
distribution,si a manifestation of Bose statistics with striking macroscopic re ercus-

!siorm There has been a forty-yeu history of attempts to observe this Bose con ensate
by neutron scattering experiments.sz

Fig. 13a shows the measured scattering, J(Y), in the norrmd liquid phase (Iiq”
uid He 1) at 3.5 K, where no condensate id present. Theoretical predictions for the
scattering are drawn M solid and dnshed lines, The momentum distribution, cal-
culated using the PIMC method,ae is nearly Gaussian at helium 11 temperatures
and h~ been converted to J(Y) via the impulse-approximation (IA) fornnh To
allow direct comparison with experimental data, this prediction for J(Y) h~ bwn
nrtificid]y broadened using a model of the instrumental resolution, res~dting in tile
tl~qhed curve. The ngreelncnt is exccllcr]t, The sigtlificance of the solid curve will be
rxplo,ined below,

Fig, 13b shuws the mensured sc~ttpring in the superfluid phnse (Iiqui(l Ifc 11) nt
(),35 K, The finghed line is ngnin mn i;lstrtltt~cilt ally. })ron(lened theoretical pre(lictitm
hnsml on the 1A formul~, this time usil~g u input the n(p) from a gro~lnd.stnte GFhlC
cnlculntionl’ which yields n condcnsmte frnction of 0,2 Yo . DIM to the instnltnvnt~d
t)ron(l~riii)g, the 1A prediction Im l(~llgrr rxt~ibits a (Iistinct Co!l(lmlsnte penkl f{(wt-
vvrr, it rrtnilts a xllnrprr pemking nr(mr](l Y = O thnn in tile normnl lit~llitl, whirh
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The measured scattering in the normal liquid phase at 3.5 K
(a) and the superfluid phase at 0.35 K (b) of liquid 4He. The
dashed curves are the theoretical predictions for n(pj transformed
to J(Y) and convoluted with instrumental resolution. PIMCZ6
calculations at 3,33 K have been used for com arisen with the

Rnormal liquid and are in excellent agreement wit the experimen=
tal results, GIFMC34 calculations have been used for comparison
with the superfluid and large discrepancies exist near Y = 0. The
solid curves axe again the theoretical predictions, but including
the FSE broadening shown in Fig, 7, The a cement between

ftheory and experiment is now excellent in bot the normal and
super-fiuid phases (from ref 53),

The results of this comparison in the superfluid phase could be interpreted aa
Nn indication that the condensate fraction is far smaller them theoretically mxlicted,

LHowever, such an inference is unjustified without a consideration of the ml-state
brcmdcting of the condensate eakt

all
We ma take find-state effects into account

/’by mmvcduting the instrument y-broadened A result with a find-state brodming
fur~ction furnished by the recent theory of Silver4a (Figt 7), In the n~~~-~iq~~
cru~e( Fig. 130), this produces the solid curve, which is indistinguishable from the

I
nwdicted scattering without final-state effects. Thus, flnd=state interactions have
ittle effect in the presence of the broad momentum distribution of the normal liquid,

‘Ikning to the superfluid cru~e, the solid curve in Fi . 13! gives the th~rctir+ly
1pr+icted ricattering wh,en fhd.stfite broadening M wel M Instruznentd rcsoiutmn

M Incorporated+ There IS now striking ngreement with the experimental dntnl ‘N~i~
nntdysis provides a drnmatic exmnpk of the importance of flnld-rntatebroadening Wtwn
m shup feature is present in the mmnentum distribution. Moreow~ the ~xr~~iellt

f
II rmlnrnt between theory and rxprrir:wl]t furnishes strong s~lpport fOr t}leexistrnre
() a c~ndensate in the supdluid mid [or the validity of t}ie microscopic rnlc~llnti(ms
of tlic tnomentllm distribution,
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Examples in whi~h the Fermi character of the constituent particles is strongly
● ~eflected in n(p) are quite widespread and can be found in atomic, electronic, and
. nuclear systems.

Fig. 14a displays the results of some representative microscopic calculations of
the momentum distribution of the interacting electron gas (one-component plasma),
at a density pertinent to sodium, The solid line is from a variational calculation based
on an optimal Jsstrow wave functions’ which accounts, in an average way, for the
effects of both short-range and long-range correlations. The long- and short-dashed
lines comespond to older ‘perturbative’ calculations,s5 which invoke the r~dom-p~~~e
approximation and thus concentrate (in a more detailed manner) on the long-range
correlations. The moment urn distribution of the noninteracting Fermi gas is also.
plot ted for reference.
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Fig. 14 Theoretical calculations r)f n(p) for the interacting electron gas,

al
a) n(p at a density comparable to Ns, The solid line is a w-i-

M ion calculation and the dashed lines are perturbativc cdcu-
lntions. n(p) t’or the rmninterncting Fermi grM is AJo shown for
reference (from ref 54), b) Density dependence of n(p). The
curves nre variational calculations of n(p) md the open circles
nnd crosses are Monte Carlo results. Smaller wduern of rt cor-
rqmnd to higher density for the interacting electron gM (from
ref M), c) Theoretical res~dts for the discontinuity Z of the ho-
mogeneous electron p M n function of density. The ●xperimt!ntd
rcwults for metallic Na m-e included fur cornparimn (from ref S7).



..– —-—.....——. -.”. ..” s”. “** .,14 V4AC

●
electromc densl ty, smaller r, corresponding to higher density. The two dmsit ies

9 ‘ considered differ by a factor 2113. The curves were obtained by the same optimal
9 Jestrow treatment which gave the solid line in Fig. 14a, the required expectation

values being evaluated in a hypernet ted-chain approximate ion which neglects elemen-
tary diagrams, ‘4 The dots show the res~dts of comparable variational Monte Carlo
calculations,se which attest to the validity of this approximation. We observe that
the discontinuity Z& of n(p) at the Fermi surface narrows as the density decreaaes,
which implies that t~e system is becomin more strongly coupled. This behavior is

7due to the fact that the screening of the on -range coulomblc interaction between
tthe electrons becomes less effective at lower ensity. The contrary behavior is seen

in the atomic (viz. liquid 3He) and nuclear cases, where the basic interactions are of
short range and Z decreases as the density increases.

Fig. 14c collects a variety of tbretical results for the discontinuity Z, or “quasi-
particie pole strength,” of the homo eneous electron as, and indicates that this sys-

% itern. can display a ran e of behaviors etween weak an strong coupling, in the density
regime relevant to alh i metals. The result of an experimental determination of Z
for metallic Na is included for comparisons’

Fig. 15 sketches the momentum distributions obtained in a recent theoretical
study of nuclear matter within the method of correlated basis functions,s8 These
results document the importance of the tensor interaction in depleting the Fermi
sea. With tensor force~ present, the Fermi surface discontinuity is Z ~ 0.7, very

t
close to that found in the optimal Jastrow calculation for the uniform electron gas
at the density corresponding to ,.letallic N~ In this sense, nuclear matter and the
electron ga~ may be considered aa comparably strongly interacting. Omitting the
tensor component of the nucleon-nuch.xm potential, the nuclear-matter 2 increases to
about 0,85. In finite nuclei, the Fermi-surface discontinuity is broadened.

Fig, 15

--- ---
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L?omentum distribution in nuclear nmtter using the method of
correlated b is functi msi

7 \
The solid ctuv,e inclu! es the te so

I ncomponent o the nuc mm-nucleon potential, wh] e the dus w
curve shows the elfect of omitting this component (ndnptcd from
rcf 58),
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momentum distribution in liquid 3He at T = O. The fixed-node GFMC calcuhition24.*,
and the variational treatment labeled FHNCsg predict essentially the same results

● I fix n(p). There is a Fermi-surface discontinuity y of roughly 0.3 (not resolved in the
. GFMC evaluation). This small value supports the view that liquid 3He is the most

strongly interacting of the Fermi systems we have considered. The FHNC variational
treatment is predicated on a conventional trial round-state wave function includ-

ting Jastrow tw~body correlations, triplets, and ackflow; it makes use of “scaling”
and cluster-expansion procedures in addition to Ferrri-hypernetted-chain (FHNC)
resummation.

By cent rast, the variational Monte Carlo calculation of Bouchaud and Lhuillier,60
assumes a radically different trial wave function for the 3He ground state, incorpo-
rateing odd-wave pairing comelat ions as well as a Jast row factor. This departure from
tradition has a dramatic consequence for n(p): the Fermi surface disappears entirely.
The implications of the Bouchaud-Lhuillier work are yet to be fully explc ed, but it
suggests that there is still room for improvement in our fundamental understanding
of liquid 3He, which serves as a protot-ype for testing approaches
correlated Fermi systems,

Fig, 16
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to other strongly=

Theoretical n(p) for liquid ‘He, The FHNCS9 and GFMC24 cd-

culationa yield very similar predifitiona for n(p) with a F’errni-
surface discontinuity of roughly 0,3, The Bouchard and Lhuillier60
(BL) calculation, which useu a rmdically different trial wave func-
tion incorporating odd=wave pairing, predicts that the Fermi-
surface disappears entirely,

CONCLUSION

We hope that this overview hns convinced readcru th~t momentum distrib~ltions
Iwe fumhunental to our understanding of qu~tutn many-body syetems in m(~t nrc~
of physics, Even though the ●nergy and lcragth scales vary by more than tcn or~h’rs
of magnitude, we have identified common conceptual and methdologicrd rhvm+i~ts
in theoretical NId experirnentnl studies of ntomic, electronic, A nuclear systt’msl
For lmck of space, our overview ll~q not developed upon the rnimihu tumlo~ies wl~irh



CIaJ weus such as metal hydrides,
. -—

62163 and po5itron-~nihilation s;udies of electronic4
“ systems.7 Nor have we discussed mcmentum-distribution experi~nents in which more

● than one outgoing particle is detected.
,

Recently, there have been impressive advances in the theoretical calcu!a~ion of
momentum distributions. Numerical calculations, using GFMC and PIN’.C tech-
niques, have benefited greatly from the accessibility of supercomputers and are be-
giming to provide extremely accurate descriptions of the momentum distribution. In
addition, there have been significant conceptv al improvements in the vw iational wave
functions used to describe many-bed s ste ,u.

Li
Moreover, the number of strongly-

interacting many-body systems for w “c momentum distributions are of interest is
expanding rapidly, particularly with the discoveries of strongly-correlated electronic
systems such as the heavy-fermion materials, high-temperature superconductors, and
structures displayin

f
quantum Hall effects .s Accomp? nying these discoveries is an

expanding variety o possibilities for variational wave functions of Fermi systems.

We have, also discussed recent theoretical advances in the calculation of correc-
tions to the Impulse approximation due to final-state effects m atorruc and nuclear

r
s stems. These effects can be quite important since they cannot be experimentally
e irninated in feasible experiments on atomic and nuclear systems. We have shown
that a quantitative theoretical characterization is essential to the detailed interpreta-
tion of the experimental results.

There have also been impressive advances on the experimental side. The devel-

r
o ment of new sources with increased energy and flux is expanding both the range
o systems that can be studied and the amount of detailed information that can be
obtained. SpaJlation neutron sources, such as IPNSt 1S1S, and LANSCE, rovide

c1much lar er fluxes at higher energies than were hitherto attainable. Syn rotron
#sources o er many orders of magmtude greater flux than available in laboratory X-

ray facilities, and they have stimulated a revival of Compton-scatteririd experiments.
New synchrotrons sources, such as the Advanced Photon Source with special insertion
devices including wigglers and undulatory, will further enhance the capabilities for
this class of measurement by several more orders of magnitude, and m particular
they will facilitate the measurement of magnetic Compton profiles. New positron
futilities and imaging capability should yield enormous improvements in studies of
the Fermi surface of electronic systems. New facilities for nuclear physics research,
such as CEBAF, will furnish much higher intensi :ies for electron-scattering studies
of nuclei and will facilitate the exploration of high-momentum components of the
nuclear wave function, one can only imagine what momentum-distnbution studies
will become possible with the 20 TeV energies of the Su erconducting Super Ccd-

ilider, or what constituent particles will form the basis for t e impulse approximation
(Higgs boeons?). Accompanying the development of these new, more intense and
higher energy sources is the development of new and improved instrumentation with
much bett~r r solut’on, Most of these technical advances are discussed in more detail
elsewhere m t~is vo\ume,

In conclusion, we are now poised for an explosive growth of kuowledge within the
next few years about momentum distributions in many-body systetna in all areas of
physics. It is our conviction that this pro ess will benefit greatly from an intcrdisci-

rplinary sharing of concepts and methodo ogy, which haa motivated the organization
of this worksho ,

E
Our inve~ti~ations of momentum distributions have convinced u9,

once again, of t e essential uruty of physics,
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